Robochameleon  v1.0
Functions
kmeans_v1.m File Reference

k-means clustering algorithm for complex-valued data. More...

Go to the source code of this file.

Functions

function kmeans_v1 (in initPosArray, in symbVector, in varargin)
 This function applies the k-means algorithm to find the centers of complex-valued data clusters. More...
 

Detailed Description

k-means clustering algorithm for complex-valued data.

This function is faster than matlab's built-in kmeans, but has worse performance in finding the cluster centroids.

Example

centers = kmeans_v1(initialCenters, DataPoints);
centers = kmeans_v1(initialCenters, DataPoints, 'iterations', 50);
centers = kmeans_v1(initialCenters, DataPoints, 'iterations', 50, 'tol', 1e-5);
centers = kmeans_v1(initialCenters, DataPoints, 'iterations', 50, 'tol', 1e-5, 'gamma', 0.1);
%>
Author
Edson Porto da Silva
Version
1

Definition in file kmeans_v1.m.

Function Documentation

function kmeans_v1 ( in  initPosArray,
in  symbVector,
in  varargin 
)

This function applies the k-means algorithm to find the centers of complex-valued data clusters.

Parameters
initPosArrayInitial particles positions (array of complex numbers)
symbVectorReceived constellation (array of symbols + noise, rotation, etc)
gammaAdaptation step. [Default: 0.5]
iterationsMax number of allowed k-means interations. [Default: 10]
tolConvergence tolerance, i.e., if the average delta in the position the centers is lower than tol, the algorithm stops. [Default: 2e-3]
Return values
centersClusters centroids.